2025年聚客大模型第三期(聚客第一第二、第三期)

2025年聚客大模型第三期课程涵盖了AI大模型的全面学习路径,从Python基础到AI及LLM基础,再到Prompt工程、LangChain、Embedding、RAG等高级主题。课程内容包括多模态大模型、Hugging Face模型微调、Llama3大模型部署与微调、LangGraph、AutoGen Studio等多方面的实战应用。学员将通过项目实战,如基于RAG的智能客服系统、多模态大模型部署、语音识别与唤醒等,掌握AI大模型的实际应用与开发技能。

类型: AI,聚客,项目实战,语音识别,微调,Llama3,Face,Hugging,多模态,RAG,LangChain,Python,AI大模型,

文件预览

资源不是实时更新,具体以网盘链接为准!

点我预览网盘文件内容
「」2025年聚客大模型第三期(聚客第一第二、第三期)
00_Python基础
  • 1-初始Python.mp4 (9.55 MB)
  • 2-Windows环境安装.mp4 (6.63 MB)
  • 3-macOS环境安装.mp4 (6.84 MB)
  • 4-VSCode安装与应用.mp4 (19.4 MB)
  • 5-PyCharn安装与应用.mp4 (22.9 MB)
  • 6-pip包管理工具.mp4 (28.7 MB)
  • 7-Python工程应用-字符串.mp4 (32.3 MB)
  • 8-Python文档化应用场景.mp4 (19.0 MB)
  • 9-如何使用注解.mp4 (29.1 MB)
  • 10-字符编码的处理.mp4 (64.7 MB)
  • 11-Python程序调式和异常处理技巧.mp4 (95.6 MB)
  • 12-JSON应用.mp4 (40.1 MB)
  • 13-文件IO.mp4 (25.3 MB)
  • 14-爬虫(1).mp4 (33.2 MB)
  • 15-爬虫(2).mp4 (76.7 MB)
  • 16-爬虫(3).mp4 (63.9 MB)
  • 17-爬虫(4).mp4 (66.9 MB)
  • 18-字符串处理.mp4 (50.7 MB)
  • 19.dotenv使用.mp4 (31.3 MB)
  • 20.FastAPI的使用.mp4 (59.6 MB)
  • 01_AI及LLM基础
    day01_AI领域基础概念
  • day1-demo.zip (14.3 KB)
  • OpenAI-HK 操作指南.pdf (151.1 KB)
  • OpenAI.apifox.json (244.5 KB)
  • 【课件】AI 领域基础概念.pdf (7.56 MB)
  • 【录播】AI 领域基础概念.mp4 (1.12 GB)
  • 【MD】AI 领域基础概念.md (49.9 KB)
  • 【语雀】AI 领域基础概念.txt (110.0 B)
  • 【资料】AI 领域基础概念.pdf (1.74 MB)
  • day02_OpenAI 开发
  • day2-demo.zip (766.1 KB)
  • 【课件】OpenAI 开发.pdf (1.64 MB)
  • 【录播】OpenAI 开发.mp4 (601.6 MB)
  • 【MD】OpenAI 开发.md (6.92 KB)
  • 【语雀】OpenAI 开发.txt (99.0 B)
  • 【资料】OpenAI 开发.pdf (642.8 KB)
  • day03_支持多模态输入的 AI Chatbot App
  • day3-demo.zip (787.7 KB)
  • 【课件】支持多模态输入的 AI Chatbot App.pdf (839.0 KB)
  • 【录播】支持多模态输入的 AI Chatbot App.mp4 (1.51 GB)
  • 【MD】支持多模态输入的 AI Chatbot App.md (3.59 KB)
  • 【语雀】支持多模态输入的 AI Chatbot App.txt (125.0 B)
  • 【资料】支持多模态输入的 AI Chatbot App.pdf (2.85 MB)
  • 02_Prompt基础
    day04_Prompt Engineering 提示词工程
  • ChatGPT提示技巧工程完全指南.pdf (2.87 MB)
  • DALL-E-3绘图提示词大全.pdf (14.3 MB)
  • day4-demo.zip (106.0 KB)
  • 实用Prompt指令大全.xlsx (6.18 MB)
  • 【课件】Prompt Engineering 提示词工程.pdf (826.4 KB)
  • 【录播】Prompt Engineering 提示词工程.mp4 (1.26 GB)
  • 【MD】Prompt Engineering 提示词工程.md (25.0 KB)
  • 【语雀】Prompt Engineering 提示词工程.txt (121.0 B)
  • 【资料】Prompt Engineering 提示词工程.pdf (2.64 MB)
  • 03_LangChain基础
    day05_LangChain 基础
  • day5-demo.zip (16.1 KB)
  • 【课件】LangChain 基础.pdf (815.1 KB)
  • 【录播】LangChain 基础.mp4 (596.7 MB)
  • 【MD】LangChain 基础.md (68.0 KB)
  • 【语雀】LangChain 基础.txt (102.0 B)
  • 【资料】LangChain 基础.pdf (3.08 MB)
  • day06_LangChain Chat Model
  • day6-demo.zip (165.1 KB)
  • redis-3.2.100_x64.zip (4.93 MB)
  • RedisDesktopManager-2022.5.zip (29.1 MB)
  • vs_BuildTools.exe (4.22 MB)
  • 【课件】LangChain Chat Model.pdf (872.4 KB)
  • 【录播】LangChain Chat Model.mp4 (793.0 MB)
  • 【MD】LangChain Chat Model.md (57.1 KB)
  • 【语雀】LangChain Chat Model.txt (106.0 B)
  • 【资料】LangChain Chat Model.pdf (3.11 MB)
  • day07_LangChain Tools & Agent
  • day7-demo.zip (1.36 MB)
  • 【课件】LangChain Tools & Agent.pdf (869.8 KB)
  • 【录播】LangChain Tools & Agent.mp4 (1.60 GB)
  • 【MD】LangChain Tools & Agent.md (62.0 KB)
  • 【语雀】LangChain Tools & Agent.txt (110.0 B)
  • 【资料】LangChain Tools & Agent.pdf (2.75 MB)
  • 04_Embedding基础
    day08_Embedding 与向量数据库
  • day8-demo.zip (1.23 MB)
  • 【课件】Embedding 与向量数据库.pdf (867.5 KB)
  • 【录播】Embedding 与向量数据库.mp4 (705.2 MB)
  • 【MD】Embedding 与向量数据库.md (96.4 KB)
  • 【语雀】Embedding 与向量数据库.txt (114.0 B)
  • 【资料】Embedding 与向量数据库.pdf (6.45 MB)
  • 05_Rag基础
    day09_RAG 专题
  • day9-demo.zip (286.2 KB)
  • 【课件】RAG 专题.pdf (863.5 KB)
  • 【录播】RAG 专题.mp4 (788.8 MB)
  • 【MD】RAG 专题.md (54.2 KB)
  • 【语雀】RAG 专题.txt (96.0 B)
  • 【资料】RAG 专题.pdf (2.75 MB)
  • 06_LangChain进阶
    day10_自定义组件专题
  • day10-demo.zip (18.7 KB)
  • 【课件】自定义组件专题.pdf (858.0 KB)
  • 【录播】自定义组件专题.mp4 (830.9 MB)
  • 【MD】自定义组件专题.md (48.7 KB)
  • 【语雀】自定义组件专题.txt (107.0 B)
  • 【资料】自定义组件专题.pdf (2.24 MB)
  • 07_langChain和RAG实战
    day11_基于LangChain和RAG的常用案例实战
  • day11-demo.zip (2.14 MB)
  • 【课件】基于LangChain和RAG的常用案例实战.pdf (863.5 KB)
  • 【录播】基于LangChain和RAG的常用案例实战.mp4 (817.6 MB)
  • 【MD】基于LangChain和RAG的常用案例实战.md (28.1 KB)
  • 【语雀】基于LangChain和RAG的常用案例实战.txt (128.0 B)
  • 【资料】基于LangChain和RAG的常用案例实战.pdf (5.41 MB)
  • 08_LangGraph
    day12_LangGraph
  • day12-demo.zip (127.0 KB)
  • 【课件】LangGraph.pdf (866.0 KB)
  • 【录播】LangGraph.mp4 (798.7 MB)
  • 【MD】LangGraph.md (129.8 KB)
  • 【语雀】LangGraph.txt (95.0 B)
  • 【资料】LangGraph.pdf (2.52 MB)
  • 09_Hugging Face
    day_13Hugging Face 核心组件介绍
  • demo_13.zip (1.06 GB)
  • 【课件】Hugging Face 核心组件介绍.pdf (502.4 KB)
  • 【录播】Hugging Face 核心组件介绍.mp4 (1.74 GB)
  • 【资料】Hugging Face 核心组件介绍.pdf (312.9 KB)
  • day_14Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
  • 【课件】Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析).pdf (503.5 KB)
  • 【录播】Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析).mp4.mp4 (766.4 MB)
  • 【资料】Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析).pdf (743.2 KB)
  • day_15Hugging Face 模型微调训练(如何处理超长文本训练问题)
  • model.zip (364.5 MB)
  • 【课件】Hugging Face 模型微调训练(如何处理超长文本训练问题).pdf (498.9 KB)
  • 【录播】Hugging Face 模型微调训练(如何处理超长文本训练问题).mp4 (801.4 MB)
  • 【资料】Hugging Face 模型微调训练(如何处理超长文本训练问题).pdf (361.4 KB)
  • day_16Hugging Face 模型微调训练(GPT2-中文生成模型定制化微调训练)
  • demo_16.zip (27.8 MB)
  • 【课件】Hugging Face 模型微调训练(GPT2-中文生成模型定制化微调训练).pdf (513.9 KB)
  • 【录播】Hugging Face 模型微调训练(GPT2-中文生成模型定制化微调训练).mp4 (802.8 MB)
  • 【资料】Hugging Face 模型微调训练(GPT2-中文生成模型定制化微调训练).pdf (323.9 KB)
  • 10_modelScope
    day_17ModeScope在线训练平台&服务器选配训练模型
  • demo_17.zip (27.8 MB)
  • 【课件】ModeScope在线训练平台&服务器选配训练模型.pdf (539.7 KB)
  • 【录播】ModeScope在线训练平台&服务器选配训练模型.mp4 (1.11 GB)
  • 【资料】ModeScope在线训练平台&服务器选配训练模型.pdf (275.8 KB)
  • 11_Llama3
    day_18Llama3大模型本地部署与调用
  • 【课件】llama3大模型本地部署与调用.pdf (555.2 KB)
  • 【录播】Llama3大模型本地部署与调用.mp4 (877.9 MB)
  • 【资料】Llama3大模型本地部署与调用(1).pdf (1.53 MB)
  • 【资料】Llama3大模型本地部署与调用.pdf (1.19 MB)
  • day_19LLaMa3微调_使用 LLaMA-Factory微调Llama3
  • data.zip (280.1 KB)
  • demo_19.zip (4.31 KB)
  • 【课件】LLaMa3微调(使用 LLaMA-Factory 微调 LLaMA3).pdf (602.0 KB)
  • 【录播】LLaMA_Factory微调Llama3.mp4 (881.6 MB)
  • 【资料】LLaMa3微调(使用 LLaMA-Factory 微调 LLaMA3).pdf (140.9 KB)
  • day_20LLaMa3打包部署教程 (Lora 微调与模型合并)
  • demo_20.zip (4.27 KB)
  • 【课件】LLaMa3打包部署(Lora微调与模型合并部署).pdf (493.1 KB)
  • 【录播】LLaMa3打包部署教程 (Lora 微调与模型合并).mp4 (1.83 GB)
  • 【资料】LLaMa3 打包部署教程 (Lora 微调与模型合并部署).pdf (782.6 KB)
  • day_21LLaMa3打包部署(LLaMA-Factory模型评估与量化)
  • Lora微调权重(Llama-3-8B-Instruct).zip (299.2 MB)
  • 【课件】LLaMa3打包部署(LLaMA-Factory模型评估与量化).pdf (497.1 KB)
  • 【录播】LLaMa3打包部署(LLaMA-Factory模型评估与量化).mp4 (899.0 MB)
  • 【资料】LLaMa3打包部署(LLaMA-Factory模型评估与量化).pdf (997.2 KB)
  • day_22LLaMa3打包部署(大模型转换为 GGUF 以及使用 ollama 运行)
    Llama-3-8B-Instruct
    qlora
    train_2024-11-27-21-02-24
    checkpoint-100
  • adapter_config.json (763.0 B)
  • adapter_model.safetensors (80.1 MB)
  • optimizer.pt (160.4 MB)
  • README.md (5.02 KB)
  • rng_state.pth (13.9 KB)
  • scheduler.pt (1.04 KB)
  • special_tokens_map.json (325.0 B)
  • tokenizer.json (16.4 MB)
  • tokenizer_config.json (49.9 KB)
  • trainer_state.json (4.29 KB)
  • training_args.bin (5.30 KB)
  • checkpoint-150
  • adapter_config.json (763.0 B)
  • adapter_model.safetensors (80.1 MB)
  • optimizer.pt (160.4 MB)
  • README.md (5.02 KB)
  • rng_state.pth (13.9 KB)
  • scheduler.pt (1.04 KB)
  • special_tokens_map.json (325.0 B)
  • tokenizer.json (16.4 MB)
  • tokenizer_config.json (49.9 KB)
  • trainer_state.json (5.96 KB)
  • training_args.bin (5.30 KB)
  • adapter_config.json (763.0 B)
  • adapter_model.safetensors (80.1 MB)
  • all_results.json (359.0 B)
  • eval_results.json (174.0 B)
  • llamaboard_config.yaml (1.69 KB)
  • README.md (1.60 KB)
  • running_log.txt (15.7 KB)
  • special_tokens_map.json (325.0 B)
  • tokenizer.json (16.4 MB)
  • tokenizer_config.json (49.9 KB)
  • train_results.json (220.0 B)
  • trainer_log.jsonl (5.94 KB)
  • trainer_state.json (6.21 KB)
  • training_args.bin (5.30 KB)
  • training_args.yaml (844.0 B)
  • training_eval_loss.png (23.1 KB)
  • training_loss.png (43.9 KB)
  • 【课件】LLaMa3打包部署(大模型转换为 GGUF 以及使用 ollama 运行).pdf (568.0 KB)
  • 【录播】LLaMa3打包部署(大模型转换为 GGUF 以及使用 ollama 运行) -笔记.PanD (93.0 B)
  • 【录播】LLaMa3打包部署(大模型转换为 GGUF 以及使用 ollama 运行) .mp4 (862.9 MB)
  • 【资料】LLaMa3打包部署(大模型转换为 GGUF 以及使用 ollama 运行).pdf (219.3 KB)
  • 12_多模态
    day_23多模态(多模态大模型的概念与本地部署调用)
  • 文生视频效果.mp4 (360.9 KB)
  • 【课件】多模态(多模态大模型的概念与本地部署调用).pdf (731.7 KB)
  • 【录播】多模态大模型的概念与本地部署调用.mp4 (1.23 GB)
  • 【资料】多模态(多模态大模型的概念与本地部署调用).pdf (4.90 MB)
  • 13_llamaindex
    day_24Llama_Index(核心组件介绍)
  • demo_24.zip (4.87 MB)
  • llama_index0.8.3.zip (108.1 MB)
  • 【课件】Llama_Index(核心组件介绍).pdf (486.3 KB)
  • 【录播】Llama_Index(核心组件介绍).mp4 (1.51 GB)
  • 【资料】Llama_Index(核心组件介绍).pdf (624.0 KB)
  • day_25llamaindex实战(使用llamaindex构建自己的知识库)
  • demo_25.zip (9.00 KB)
  • 【课件】llamaindex实战(使用llamaindex构建自己的知识库).pdf (491.4 KB)
  • 【录播】llamaindex实战(使用llamaindex构建自己的知识库).mp4 (1.01 GB)
  • 【资料】llamaindex实战(使用llamaindex构建自己的知识库).pdf (2.23 MB)
  • 14_AutoGen Studio
    day_26AutoGen Studio调用本地大模型实现多Agent应用
  • 【课件】AutoGen Studio入门使用.pdf (598.4 KB)
  • 【录播】AutoGen Studio调用本地大模型实现多Agent应用.mp4 (834.2 MB)
  • 【资料】AutoGen Studio入门使用.pdf (858.8 KB)
  • 15 项目实战(聚客一和二期)
    day33_RAG项目实战(使用llamaindex构建自己的知识库)
  • RAG_项目源码.zip (11.3 KB)
  • 【课件】RAG项目实战(使用llamaindex构建自己的知识库).pdf (492.4 KB)
  • 【录播】RAG项目实战(使用llamaindex构建自己的知识库).mp4 (2.29 GB)
  • 【资料】RAG项目实战(使用llamaindex构建自己的知识库).pdf (2.48 MB)
  • day34_视觉项目实战(基于yolo的骨龄识别项目_01)
  • yolov5-master.zip (127.0 MB)
  • 【课件】视觉项目实战(基于yolo的骨龄识别项目_01).pdf (761.7 KB)
  • 【录播】视觉项目实战(基于yolo的骨龄识别项目_01).mp4 (925.6 MB)
  • 【资料】YOLOv5目标侦测教程.pdf (8.45 MB)
  • day35_视觉项目实战(基于yolo的骨龄识别项目_02)
    dataset
  • arthrosis.zip (141.5 MB)
  • VOCdevkit.zip (827.4 MB)
  • day31_demo
    hand_bone_detect
    cutpictures
  • DIPFifth.png (33.6 KB)
  • DIPFirst.png (55.3 KB)
  • DIPThird.png (42.5 KB)
  • MCPFifth.png (37.7 KB)
  • MCPFirst.png (63.9 KB)
  • MCPThird.png (43.5 KB)
  • MIPFifth.png (25.4 KB)
  • MIPThird.png (32.6 KB)
  • PIPFifth.png (28.2 KB)
  • PIPFirst.png (38.1 KB)
  • PIPThird.png (37.1 KB)
  • Radius.png (81.5 KB)
  • Ulna.png (53.2 KB)
  • detect_result
  • detect.jpg (1.37 MB)
  • img
  • 1548.png (2.26 MB)
  • params
  • DIP_best.pth (42.7 MB)
  • DIPFirst_best.pth (42.7 MB)
  • MCP_best.pth (42.7 MB)
  • MCPFirst_best.pth (42.7 MB)
  • MIP_best.pth (42.7 MB)
  • PIP_best.pth (42.7 MB)
  • PIPFirst_best.pth (42.7 MB)
  • Radius_best.pth (42.7 MB)
  • Ulna_best.pth (42.7 MB)
  • templates
  • client.html (574.0 B)
  • result.html (238.0 B)
  • test_data
  • example.jpg (689.3 KB)
  • bone_detect_ui.ui (2.30 KB)
  • bone_filter_utils.py (622.0 B)
  • common.py (6.96 KB)
  • detect_bone.py (2.86 KB)
  • detect_utils.py (3.34 KB)
  • flask_test_img.py (1.27 KB)
  • main.py (1.65 KB)
  • test.py (995.0 B)
  • hand_test
    logs
    DIP_loss_DIP
    val_avg_losses
  • events.out.tfevents.1688888129.DESKTOP-BT6NS4S.11960.2 (3.68 KB)
  • DIP_loss_train_avg_loss
  • events.out.tfevents.1688888129.DESKTOP-BT6NS4S.11960.1 (3.68 KB)
  • DIPFirst_loss_DIPFirst
    val_avg_losses
  • events.out.tfevents.1688787690.DESKTOP-BT6NS4S.13268.4 (4.07 KB)
  • DIPFirst_loss_train_avg_loss
  • events.out.tfevents.1688787690.DESKTOP-BT6NS4S.13268.3 (4.07 KB)
  • MCP_loss_MCP
    val_avg_losses
  • events.out.tfevents.1688891547.DESKTOP-BT6NS4S.11960.4 (3.09 KB)
  • MCP_loss_train_avg_loss
  • events.out.tfevents.1688891547.DESKTOP-BT6NS4S.11960.3 (3.09 KB)
  • MCPFirst_loss_MCPFirst
    val_avg_losses
  • events.out.tfevents.1688785342.DESKTOP-BT6NS4S.13268.2 (4.07 KB)
  • MCPFirst_loss_train_avg_loss
  • events.out.tfevents.1688785342.DESKTOP-BT6NS4S.13268.1 (4.07 KB)
  • MIP_loss_MIP
    val_avg_losses
  • events.out.tfevents.1688792192.DESKTOP-BT6NS4S.13268.8 (3.68 KB)
  • MIP_loss_train_avg_loss
  • events.out.tfevents.1688792192.DESKTOP-BT6NS4S.13268.7 (3.68 KB)
  • PIP_loss_PIP
    val_avg_losses
  • events.out.tfevents.1688801475.DESKTOP-BT6NS4S.13268.14 (2.42 KB)
  • PIP_loss_train_avg_loss
  • events.out.tfevents.1688801475.DESKTOP-BT6NS4S.13268.13 (2.42 KB)
  • PIPFirst_loss_PIPFirst
    val_avg_losses
  • events.out.tfevents.1688789961.DESKTOP-BT6NS4S.13268.6 (4.07 KB)
  • PIPFirst_loss_train_avg_loss
  • events.out.tfevents.1688789961.DESKTOP-BT6NS4S.13268.5 (4.07 KB)
  • Radius_loss_Radius
    val_avg_losses
  • events.out.tfevents.1688796343.DESKTOP-BT6NS4S.13268.10 (3.91 KB)
  • Radius_loss_train_avg_loss
  • events.out.tfevents.1688796343.DESKTOP-BT6NS4S.13268.9 (3.91 KB)
  • Ulna_loss_train_avg_loss
  • events.out.tfevents.1688799016.DESKTOP-BT6NS4S.13268.11 (3.76 KB)
  • Ulna_loss_Ulna
    val_avg_losses
  • events.out.tfevents.1688799016.DESKTOP-BT6NS4S.13268.12 (3.76 KB)
  • events.out.tfevents.1688785315.DESKTOP-BT6NS4S.13268.0 (29.1 KB)
  • events.out.tfevents.1688888077.DESKTOP-BT6NS4S.11960.0 (7.69 KB)
  • params
  • DIP_best.pth (42.7 MB)
  • DIPFirst_best.pth (42.7 MB)
  • MCP_best.pth (42.7 MB)
  • MCPFirst_best.pth (42.7 MB)
  • MIP_best.pth (42.7 MB)
  • PIP_best.pth (42.7 MB)
  • PIPFirst_best.pth (42.7 MB)
  • Radius_best.pth (42.7 MB)
  • Ulna_best.pth (42.7 MB)
  • utils
  • data_set.py (1.64 KB)
  • data_utils.py (2.48 KB)
  • tools.py (805.0 B)
  • test1.py (244.0 B)
  • trainer.py (3.72 KB)
  • yolov5-bone
    .github
    ISSUE_TEMPLATE
  • bug-report.yml (2.85 KB)
  • config.yml (358.0 B)
  • feature-request.yml (1.74 KB)
  • question.yml (1.12 KB)
  • workflows
  • ci-testing.yml (7.52 KB)
  • codeql-analysis.yml (2.02 KB)
  • docker.yml (1.56 KB)
  • greetings.yml (5.38 KB)
  • links.yml (1.74 KB)
  • stale.yml (2.31 KB)
  • translate-readme.yml (708.0 B)
  • dependabot.yml (441.0 B)
  • PULL_REQUEST_TEMPLATE.md (774.0 B)
  • __pycache__
  • export.cpython-310.pyc (30.5 KB)
  • hubconf.cpython-310.pyc (5.10 KB)
  • val.cpython-310.pyc (13.8 KB)
  • classify
  • predict.py (11.5 KB)
  • train.py (16.0 KB)
  • tutorial.ipynb (101.2 KB)
  • val.py (7.89 KB)
  • data
    hyps
  • hyp.no-augmentation.yaml (1.64 KB)
  • hyp.Objects365.yaml (674.0 B)
  • hyp.scratch-high.yaml (1.64 KB)
  • hyp.scratch-low.yaml (1.65 KB)
  • hyp.scratch-med.yaml (1.65 KB)
  • hyp.VOC.yaml (1.13 KB)
  • images
  • 14732.png (584.9 KB)
  • 1526.png (1.05 MB)
  • 1547.png (1.32 MB)
  • 1548.png (2.26 MB)
  • scripts
  • download_weights.sh (641.0 B)
  • get_coco.sh (1.53 KB)
  • get_coco128.sh (619.0 B)
  • get_imagenet.sh (1.63 KB)
  • Argoverse.yaml (2.67 KB)
  • coco.yaml (2.44 KB)
  • coco128-seg.yaml (1.83 KB)
  • coco128.yaml (1.81 KB)
  • GlobalWheat2020.yaml (1.84 KB)
  • ImageNet.yaml (18.4 KB)
  • mydata.yaml (600.0 B)
  • Objects365.yaml (8.99 KB)
  • SKU-110K.yaml (2.29 KB)
  • VisDrone.yaml (2.90 KB)
  • VOC.yaml (3.41 KB)
  • xView.yaml (5.05 KB)
  • models
    __pycache__
  • __init__.cpython-310.pyc (136.0 B)
  • common.cpython-310.pyc (36.1 KB)
  • experimental.cpython-310.pyc (4.72 KB)
  • yolo.cpython-310.pyc (15.7 KB)
  • hub
  • anchors.yaml (3.26 KB)
  • yolov3-spp.yaml (1.53 KB)
  • yolov3-tiny.yaml (1.20 KB)
  • yolov3.yaml (1.52 KB)
  • yolov5-bifpn.yaml (1.39 KB)
  • yolov5-fpn.yaml (1.19 KB)
  • yolov5-p2.yaml (1.65 KB)
  • yolov5-p6.yaml (1.70 KB)
  • yolov5-p7.yaml (2.07 KB)
  • yolov5-p34.yaml (1.32 KB)
  • yolov5-panet.yaml (1.38 KB)
  • yolov5l6.yaml (1.78 KB)
  • yolov5m6.yaml (1.78 KB)
  • yolov5n6.yaml (1.78 KB)
  • yolov5s-ghost.yaml (1.45 KB)
  • yolov5s-LeakyReLU.yaml (1.46 KB)
  • yolov5s-transformer.yaml (1.41 KB)
  • yolov5s6.yaml (1.78 KB)
  • yolov5x6.yaml (1.78 KB)
  • segment
  • yolov5l-seg.yaml (1.38 KB)
  • yolov5m-seg.yaml (1.38 KB)
  • yolov5n-seg.yaml (1.38 KB)
  • yolov5s-seg.yaml (1.38 KB)
  • yolov5x-seg.yaml (1.38 KB)
  • __init__.py
  • common.py (40.8 KB)
  • experimental.py (4.22 KB)
  • tf.py (26.4 KB)
  • yolo.py (17.4 KB)
  • yolov5l.yaml (1.37 KB)
  • yolov5m.yaml (1.37 KB)
  • yolov5n.yaml (1.37 KB)
  • yolov5s.yaml (1.37 KB)
  • yolov5x.yaml (1.37 KB)
  • runs
    detect
    exp
  • 1547.png (3.90 MB)
  • 1548.png (6.35 MB)
  • exp2
  • 14732.png (1.55 MB)
  • 1547.png (3.90 MB)
  • 1548.png (6.35 MB)
  • exp3
  • 14732.png (1.55 MB)
  • 1526.png (2.88 MB)
  • 1547.png (3.90 MB)
  • 1548.png (6.35 MB)
  • exp4
  • 14732.png (1.55 MB)
  • 1526.png (2.88 MB)
  • 1547.png (3.90 MB)
  • 1548.png (6.35 MB)
  • exp5
    crops
    DistalPhalanx
  • 14732.jpg (4.83 KB)
  • 147322.jpg (3.98 KB)
  • 147323.jpg (3.17 KB)
  • 147324.jpg (3.68 KB)
  • 147325.jpg (3.98 KB)
  • 1526.jpg (7.51 KB)
  • 15262.jpg (6.63 KB)
  • 15263.jpg (7.36 KB)
  • 15264.jpg (10.8 KB)
  • 15265.jpg (7.45 KB)
  • 1547.jpg (8.51 KB)
  • 15472.jpg (8.76 KB)
  • 15473.jpg (10.1 KB)
  • 15474.jpg (11.0 KB)
  • 15475.jpg (14.9 KB)
  • 1548.jpg (28.2 KB)
  • 15482.jpg (30.3 KB)
  • 15483.jpg (28.5 KB)
  • 15484.jpg (34.7 KB)
  • 15485.jpg (26.8 KB)
  • MCP
  • 14732.jpg (4.37 KB)
  • 147322.jpg (4.05 KB)
  • 147323.jpg (5.02 KB)
  • 147324.jpg (5.09 KB)
  • 1526.jpg (7.05 KB)
  • 15262.jpg (7.18 KB)
  • 15263.jpg (8.14 KB)
  • 15264.jpg (8.76 KB)
  • 1547.jpg (11.6 KB)
  • 15472.jpg (9.88 KB)
  • 15473.jpg (9.98 KB)
  • 15474.jpg (11.6 KB)
  • 1548.jpg (28.4 KB)
  • 15482.jpg (21.9 KB)
  • 15483.jpg (21.5 KB)
  • 15484.jpg (26.5 KB)
  • MCPFirst
  • 14732.jpg (7.52 KB)
  • 1526.jpg (13.2 KB)
  • 1547.jpg (16.2 KB)
  • 1548.jpg (39.0 KB)
  • MiddlePhalanx
  • 14732.jpg (3.74 KB)
  • 147322.jpg (3.93 KB)
  • 147323.jpg (2.96 KB)
  • 147324.jpg (3.51 KB)
  • 1526.jpg (5.13 KB)
  • 15262.jpg (6.77 KB)
  • 15263.jpg (6.03 KB)
  • 15264.jpg (6.77 KB)
  • 1547.jpg (9.07 KB)
  • 15472.jpg (8.48 KB)
  • 15473.jpg (7.40 KB)
  • 15474.jpg (7.77 KB)
  • 1548.jpg (20.5 KB)
  • 15482.jpg (16.2 KB)
  • 15483.jpg (19.6 KB)
  • 15484.jpg (19.6 KB)
  • ProximalPhalanx
  • 14732.jpg (3.18 KB)
  • 147322.jpg (4.71 KB)
  • 147323.jpg (4.74 KB)
  • 147324.jpg (4.35 KB)
  • 147325.jpg (4.92 KB)
  • 1526.jpg (6.80 KB)
  • 15262.jpg (6.22 KB)
  • 15263.jpg (7.05 KB)
  • 15264.jpg (8.77 KB)
  • 15265.jpg (8.70 KB)
  • 1547.jpg (9.51 KB)
  • 15472.jpg (9.68 KB)
  • 15473.jpg (10.2 KB)
  • 15474.jpg (10.4 KB)
  • 15475.jpg (8.49 KB)
  • 1548.jpg (18.6 KB)
  • 15482.jpg (24.1 KB)
  • 15483.jpg (25.3 KB)
  • 15484.jpg (24.2 KB)
  • 15485.jpg (22.3 KB)
  • Radius
  • 14732.jpg (11.0 KB)
  • 1526.jpg (15.3 KB)
  • 1547.jpg (21.9 KB)
  • 1548.jpg (57.1 KB)
  • Ulna
  • 14732.jpg (7.81 KB)
  • 1526.jpg (9.88 KB)
  • 1547.jpg (15.3 KB)
  • 1548.jpg (31.3 KB)
  • 14732.png (1.55 MB)
  • 1526.png (2.88 MB)
  • 1547.png (3.90 MB)
  • 1548.png (6.35 MB)
  • train
    exp
    weights
  • best.pt (54.2 MB)
  • last.pt (54.2 MB)
  • hyp.yaml (401.0 B)
  • labels.jpg (133.3 KB)
  • labels_correlogram.jpg (234.9 KB)
  • opt.yaml (1.08 KB)
  • results.csv (25.6 KB)
  • train_batch0.jpg (573.4 KB)
  • train_batch1.jpg (582.7 KB)
  • train_batch2.jpg (526.6 KB)
  • segment
  • predict.py (15.4 KB)
  • train.py (33.9 KB)
  • tutorial.ipynb (42.4 KB)
  • val.py (23.4 KB)
  • utils
    __pycache__
  • __init__.cpython-310.pyc (2.67 KB)
  • augmentations.cpython-310.pyc (13.4 KB)
  • autoanchor.cpython-310.pyc (6.32 KB)
  • autobatch.cpython-310.pyc (2.46 KB)
  • bone_filter_utils.cpython-310.pyc (847.0 B)
  • bone_utils.cpython-310.pyc (837.0 B)
  • callbacks.cpython-310.pyc (2.65 KB)
  • dataloaders.cpython-310.pyc (42.3 KB)
  • downloads.cpython-310.pyc (4.15 KB)
  • general.cpython-310.pyc (36.8 KB)
  • loss.cpython-310.pyc (6.10 KB)
  • metrics.cpython-310.pyc (11.0 KB)
  • plots.cpython-310.pyc (21.0 KB)
  • torch_utils.cpython-310.pyc (16.4 KB)
  • aws
    __init__.py
  • mime.sh (780.0 B)
  • resume.py (1.17 KB)
  • userdata.sh (1.22 KB)
  • docker
  • Dockerfile (2.61 KB)
  • Dockerfile-arm64 (1.64 KB)
  • Dockerfile-cpu (1.67 KB)
  • flask_rest_api
  • example_request.py (369.0 B)
  • README.md (1.67 KB)
  • restapi.py (1.41 KB)
  • google_app_engine
  • additional_requirements.txt (187.0 B)
  • app.yaml (174.0 B)
  • Dockerfile (821.0 B)
  • loggers
    __pycache__
  • __init__.cpython-310.pyc (13.2 KB)
  • clearml
    __pycache__
  • __init__.cpython-310.pyc (151.0 B)
  • clearml_utils.cpython-310.pyc (5.77 KB)
  • __init__.py
  • clearml_utils.py (7.85 KB)
  • hpo.py (5.15 KB)
  • README.md (10.6 KB)
  • comet
    __pycache__
  • __init__.cpython-310.pyc (14.4 KB)
  • comet_utils.cpython-310.pyc (4.13 KB)
  • __init__.py (18.3 KB)
  • comet_utils.py (4.64 KB)
  • hpo.py (6.50 KB)
  • optimizer_config.json (2.95 KB)
  • README.md (10.5 KB)
  • wandb
    __pycache__
  • __init__.cpython-310.pyc (149.0 B)
  • wandb_utils.cpython-310.pyc (6.78 KB)
  • __init__.py
  • wandb_utils.py (8.06 KB)
  • __init__.py (16.1 KB)
  • segment
    __pycache__
  • __init__.cpython-310.pyc (143.0 B)
  • general.cpython-310.pyc (4.98 KB)
  • __init__.py
  • augmentations.py (3.67 KB)
  • dataloaders.py (13.5 KB)
  • general.py (5.68 KB)
  • loss.py (8.39 KB)
  • metrics.py (5.33 KB)
  • plots.py (6.24 KB)
  • __init__.py (2.58 KB)
  • activations.py (3.37 KB)
  • augmentations.py (16.6 KB)
  • autoanchor.py (7.25 KB)
  • autobatch.py (2.92 KB)
  • bone_filter_utils.py (622.0 B)
  • bone_utils.py (675.0 B)
  • callbacks.py (2.60 KB)
  • dataloaders.py (54.5 KB)
  • downloads.py (4.84 KB)
  • general.py (44.4 KB)
  • loss.py (9.69 KB)
  • metrics.py (14.2 KB)
  • plots.py (24.1 KB)
  • torch_utils.py (19.2 KB)
  • triton.py (3.55 KB)
  • .dockerignore (3.61 KB)
  • .gitattributes (75.0 B)
  • .gitignore (3.90 KB)
  • .pre-commit-config.yaml (1.71 KB)
  • benchmarks.py (7.82 KB)
  • CITATION.cff (393.0 B)
  • CONTRIBUTING.md (4.89 KB)
  • detect.py (14.0 KB)
  • export.py (40.2 KB)
  • hubconf.py (7.59 KB)
  • images_tag.py (1.43 KB)
  • LICENSE (33.7 KB)
  • README.md (40.5 KB)
  • README.zh-CN.md (39.6 KB)
  • requirements.txt (1.52 KB)
  • setup.cfg (1.69 KB)
  • test1.py (1.08 KB)
  • test08.py (900.0 B)
  • train.py (33.2 KB)
  • tutorial.ipynb (40.0 KB)
  • val.py (20.0 KB)
  • voc_to_yolo.py (2.63 KB)
  • yolov5s.pt (14.1 MB)
  • 【课件】视觉项目实战(基于yolo的骨龄识别项目_02).pdf (805.9 KB)
  • 【录播】视觉项目实战(基于yolo的骨龄识别项目_02).mp4 (920.7 MB)
  • day_27基于本地大模型的在线心理问诊系统(训练篇)
  • data.zip (17.0 MB)
  • demo_27.zip (2.56 KB)
  • 项目流程.png (103.1 KB)
  • 【课件】基于本地大模型的在线心理问诊系统(训练篇).pdf (497.8 KB)
  • 【录播】基于本地大模型的在线心理问诊系统(训练篇01).mp4 (1.17 GB)
  • 【资料】xtuner微调大模型教程.pdf (173.0 KB)
  • day_28基于本地大模型的在线心理问诊系统(训练篇)
    data
  • llama_factory_data.zip (5.54 MB)
  • output_conversations.csv (18.1 MB)
  • xtuner_data.zip (5.78 MB)
  • llamafactory数据集转换代码
  • data_utils.py (2.29 KB)
  • xtuner环境
  • requirements.txt (4.33 KB)
  • xtuner模型训练配置文件
  • internlm2_5_chat_7b_qlora_oasst1_e3.py (8.04 KB)
  • qwen1_5_1_8b_chat_qlora_alpaca_e3.py (7.53 KB)
  • 【录播】基于本地大模型的在线心理问诊系统(训练篇02).mp4 (990.3 MB)
  • day_29基于本地大模型的在线心理问诊系统(部署篇)
    项目模型
    Qwen1.5-1.8B-Chat_cusm
  • added_tokens.json (80.0 B)
  • config.json (748.0 B)
  • generation_config.json (205.0 B)
  • merges.txt (1.59 MB)
  • model.safetensors (3.42 GB)
  • special_tokens_map.json (367.0 B)
  • tokenizer.json (10.9 MB)
  • tokenizer_config.json (1.29 KB)
  • vocab.json (2.65 MB)
  • trainer_log.jsonl (42.0 KB)
  • training_eval_loss.png (40.1 KB)
  • training_loss.png (55.3 KB)
  • 【课件】基于本地大模型的在线心理问诊系统(部署篇).pdf (496.7 KB)
  • 【录播】基于本地大模型的在线心理问诊系统(部署篇).mp4 (1.65 GB)
  • 【资料】基于本地大模型的在线心理问诊系统(部署篇).pdf (271.1 KB)
  • day_30基于RAG的线上智能客服系统(微调篇)
  • data.zip (2.19 MB)
  • demo_30.zip (1.70 KB)
  • 项目背景.png (149.3 KB)
  • 【课件】基于RAG的线上智能客服系统(微调篇).pdf (494.6 KB)
  • 【录播】基于RAG的线上智能客服系统(微调篇).mp4 (1.15 GB)
  • day_31基于RAG的线上智能客服系统(部署篇)
    lora模型
  • Qwen2.5-3B-Instruct-lora.zip (2.69 GB)
  • demo_31.zip (30.9 KB)
  • 【课件】基于RAG的线上智能客服系统(部署篇).pdf (495.8 KB)
  • 【录播】基于RAG的线上智能客服系统(部署篇).mp4 (1.40 GB)
  • 【资料】OpenCompass文档.md (22.1 KB)
  • day_32基于pytorch的语音识别与语音唤醒
    本地存储index的RAG
    data
  • data.csv (29.2 KB)
  • 【资料】OpenCompass文档.md (22.1 KB)
  • storage
  • default__vector_store.json (361.0 KB)
  • docstore.json (171.4 KB)
  • graph_store.json (18.0 B)
  • image__vector_store.json (72.0 B)
  • index_store.json (3.60 KB)
  • rag.py (2.68 KB)
  • demo_32.zip (204.4 MB)
  • 语音应用场景.png (67.8 KB)
  • 【课件】扩展项目(基于pytorch实现的语音识别).pdf (491.6 KB)
  • 【录播】扩展项目(基于pytorch的语音识别与语音唤醒).mp4 (1.79 GB)
  • 16_项目实战(聚客第三期_最新)
    1_开班典礼-241216
  • 2024-12-16 开班典礼.mp4 (277.3 MB)
  • 2_RAG-Embedding-Vector
    day01
    RAG-Embeddings
    assets
  • embeddings.png (48.8 KB)
  • GraphRAG.png (752.8 KB)
  • mteb.png (23.6 KB)
  • RAG.mp4 (1.87 MB)
  • rag.png (81.7 KB)
  • sbert-rerank.png (71.8 KB)
  • sbert.png (20.8 KB)
  • sim.png (26.8 KB)
  • table_rag.png (420.4 KB)
  • vector.png (23.6 KB)
  • vectordb.png (16.6 KB)
  • .env (80.0 B)
  • chinese_utils.py (979.0 B)
  • index.ipynb (56.2 KB)
  • llama2.pdf (276.7 KB)
  • llama2_page8.pdf (176.4 KB)
  • rank.py (3.14 KB)
  • Python语法入门教程.md (49.3 KB)
  • RAG搭建流程和文本向量.mp4 (469.0 MB)
  • day02
    RAG-Embeddings
    assets
  • chroma.svg (1.20 MB)
  • embeddings.png (48.8 KB)
  • GraphRAG.png (752.8 KB)
  • mteb.png (23.6 KB)
  • RAG.mp4 (1.87 MB)
  • rag.png (81.7 KB)
  • sbert-rerank.png (71.8 KB)
  • sbert.png (20.8 KB)
  • sim.png (26.8 KB)
  • table_rag.png (420.4 KB)
  • vector.png (23.6 KB)
  • vectordb.png (16.6 KB)
  • llama2_page8
    table_images
  • page_1_0.png (25.1 KB)
  • page_1_1.png (16.3 KB)
  • page_1.png (156.4 KB)
  • .env (80.0 B)
  • chinese_utils.py (979.0 B)
  • index.ipynb (319.4 KB)
  • llama2.pdf (276.7 KB)
  • llama2_page8.pdf (176.4 KB)
  • rank.py (3.14 KB)
  • 向量数据库和RAG高级进阶.mp4 (634.7 MB)
  • 3_LangChain
    LangChain
    assets
  • data_connection.jpg (42.3 KB)
  • langchain.png (54.6 KB)
  • model_io.jpg (643.3 KB)
  • serve
  • joke_client.py (136.0 B)
  • joke_server.py (573.0 B)
  • example_prompt_template.txt (31.0 B)
  • index.ipynb (63.7 KB)
  • llama2.pdf (276.7 KB)
  • memory.db (8.00 KB)
  • LangChain.mp4 (618.5 MB)
  • day04_Hugging Face 核心组件介绍
    demo_4
    API_test
  • api_test01.py (243.0 B)
  • api_test02.py (361.0 B)
  • data
    ChnSentiCorp
    test
  • cache-7dd332715d90b654.arrow (9.97 KB)
  • dataset.arrow (372.3 KB)
  • dataset_info.json (1.79 KB)
  • state.json (255.0 B)
  • train
  • cache-1e3bba9512e20e17.arrow (73.5 KB)
  • cache-3bdb9443d1ca0706.arrow (624.0 B)
  • cache-7f783dce092dc384.arrow (73.5 KB)
  • cache-8a97cd1e06b735d2.arrow (73.5 KB)
  • cache-9f44d179cc25c59e.arrow (73.5 KB)
  • cache-39dfc0aff9c238ae.arrow (73.5 KB)
  • cache-42a7d570466d6993.arrow (76.7 KB)
  • cache-618b312c42069194.arrow (73.5 KB)
  • cache-942e97a8804ee679.arrow (73.5 KB)
  • cache-3432ecc2b0d45f4c.arrow (73.5 KB)
  • cache-60739da7e9e626bf.arrow (73.5 KB)
  • cache-703908ea6da8e823.arrow (73.5 KB)
  • cache-980049a695f6628c.arrow (69.1 KB)
  • cache-a6ab41ffbc1946d5.arrow (7.95 KB)
  • cache-a34d90b946dc58b8.arrow (73.5 KB)
  • cache-a41fe1013beb0d46.arrow (73.5 KB)
  • cache-b4e51936648802e2.arrow (76.7 KB)
  • cache-b53b61aef9d859aa.arrow (73.5 KB)
  • cache-b85c50cd434dd865.arrow (73.5 KB)
  • cache-badcf79eb9fa62a0.arrow (73.5 KB)
  • cache-c5b262546ff026fd.arrow (76.7 KB)
  • cache-d7c6377d856b0538.arrow (73.5 KB)
  • cache-eb31b953e8e788fb.arrow (73.5 KB)
  • cache-fdafe12f59ab3430.arrow (73.5 KB)
  • dataset.arrow (2.96 MB)
  • dataset_info.json (1.79 KB)
  • state.json (256.0 B)
  • validation
  • cache-1b273238fdadead7.arrow (9.57 KB)
  • cache-4a46afc6455cc3f0.arrow (9.57 KB)
  • cache-5cd00431b9d3a916.arrow (9.57 KB)
  • cache-8ae76a3b52248a8f.arrow (9.57 KB)
  • cache-9b7789b1e0e636fb.arrow (9.57 KB)
  • cache-85b0ee5d0aeacbe5.arrow (9.57 KB)
  • cache-486e66fea9239c3f.arrow (9.57 KB)
  • cache-585e054403b710b3.arrow (9.57 KB)
  • cache-749efdb8f0ee42be.arrow (9.57 KB)
  • cache-805d054a96ccc48f.arrow (9.57 KB)
  • cache-428974171b74f1a0.arrow (9.57 KB)
  • cache-800047dd8fdede53.arrow (9.57 KB)
  • cache-a1c8a8bb0a669e93.arrow (9.57 KB)
  • cache-c072f719f0b9b62a.arrow (9.57 KB)
  • cache-e621cb96adf0c923.arrow (9.97 KB)
  • dataset.arrow (376.6 KB)
  • dataset_info.json (1.79 KB)
  • state.json (261.0 B)
  • dataset_dict.json (43.0 B)
  • hermes-function-calling-v1.csv (14.7 MB)
  • dataset
  • dataset_test.py (425.0 B)
  • trasnFormers_test
    model
    bert-base-chinese
    .locks
    models--bert-base-chinese
    models--bert-base-chinese
    .no_exist
    c30a6ed22ab4564dc1e3b2ecbf6e766b0611a33f
    added_tokens.json
    special_tokens_map.json
    blobs
    refs
  • main (40.0 B)
  • snapshots
    c30a6ed22ab4564dc1e3b2ecbf6e766b0611a33f
  • config.json (624.0 B)
  • model.safetensors (392.5 MB)
  • tokenizer.json (262.6 KB)
  • tokenizer_config.json (49.0 B)
  • vocab.txt (107.0 KB)
  • uer
    gpt2-chinese-cluecorpussmall
    .locks
    models--uer--gpt2-chinese-cluecorpussmall
    models--uer--gpt2-chinese-cluecorpussmall
    .no_exist
    blobs
    refs
  • main (40.0 B)
  • snapshots
  • test01.py (489.0 B)
  • test02.py (2.67 KB)
  • test03.py (658.0 B)
  • 【课件】Hugging Face 核心组件介绍.pdf (501.5 KB)
  • 【录播】Hugging Face 核心组件介绍.mp4 (762.9 MB)
  • 【资料】Hugging Face 核心组件介绍.pdf (243.1 KB)
  • day05_基于 BERT 的中文评价情感分析
    demo_5
    .idea
    inspectionProfiles
  • profiles_settings.xml (174.0 B)
  • .gitignore (50.0 B)
  • demo_5.iml (291.0 B)
  • misc.xml (189.0 B)
  • modules.xml (271.0 B)
  • workspace.xml (7.20 KB)
  • __pycache__
  • MyData.cpython-312.pyc (1.48 KB)
  • net.cpython-312.pyc (1.75 KB)
  • data
    ChnSentiCorp
    test
  • cache-7dd332715d90b654.arrow (9.97 KB)
  • dataset.arrow (372.3 KB)
  • dataset_info.json (1.79 KB)
  • state.json (255.0 B)
  • train
  • cache-1e3bba9512e20e17.arrow (73.5 KB)
  • cache-3bdb9443d1ca0706.arrow (624.0 B)
  • cache-7f783dce092dc384.arrow (73.5 KB)
  • cache-8a97cd1e06b735d2.arrow (73.5 KB)
  • cache-9f44d179cc25c59e.arrow (73.5 KB)
  • cache-39dfc0aff9c238ae.arrow (73.5 KB)
  • cache-42a7d570466d6993.arrow (76.7 KB)
  • cache-618b312c42069194.arrow (73.5 KB)
  • cache-942e97a8804ee679.arrow (73.5 KB)
  • cache-3432ecc2b0d45f4c.arrow (73.5 KB)
  • cache-60739da7e9e626bf.arrow (73.5 KB)
  • cache-703908ea6da8e823.arrow (73.5 KB)
  • cache-980049a695f6628c.arrow (69.1 KB)
  • cache-a6ab41ffbc1946d5.arrow (7.95 KB)
  • cache-a34d90b946dc58b8.arrow (73.5 KB)
  • cache-a41fe1013beb0d46.arrow (73.5 KB)
  • cache-b4e51936648802e2.arrow (76.7 KB)
  • cache-b53b61aef9d859aa.arrow (73.5 KB)
  • cache-b85c50cd434dd865.arrow (73.5 KB)
  • cache-badcf79eb9fa62a0.arrow (73.5 KB)
  • cache-c5b262546ff026fd.arrow (76.7 KB)
  • cache-d7c6377d856b0538.arrow (73.5 KB)
  • cache-eb31b953e8e788fb.arrow (73.5 KB)
  • cache-fdafe12f59ab3430.arrow (73.5 KB)
  • dataset.arrow (2.96 MB)
  • dataset_info.json (1.79 KB)
  • state.json (256.0 B)
  • validation
  • cache-1b273238fdadead7.arrow (9.57 KB)
  • cache-4a46afc6455cc3f0.arrow (9.57 KB)
  • cache-5cd00431b9d3a916.arrow (9.57 KB)
  • cache-8ae76a3b52248a8f.arrow (9.57 KB)
  • cache-9b7789b1e0e636fb.arrow (9.57 KB)
  • cache-85b0ee5d0aeacbe5.arrow (9.57 KB)
  • cache-486e66fea9239c3f.arrow (9.57 KB)
  • cache-585e054403b710b3.arrow (9.57 KB)
  • cache-749efdb8f0ee42be.arrow (9.57 KB)
  • cache-805d054a96ccc48f.arrow (9.57 KB)
  • cache-428974171b74f1a0.arrow (9.57 KB)
  • cache-800047dd8fdede53.arrow (9.57 KB)
  • cache-a1c8a8bb0a669e93.arrow (9.57 KB)
  • cache-c072f719f0b9b62a.arrow (9.57 KB)
  • cache-e621cb96adf0c923.arrow (9.97 KB)
  • dataset.arrow (376.6 KB)
  • dataset_info.json (1.79 KB)
  • state.json (261.0 B)
  • dataset_dict.json (43.0 B)
  • hermes-function-calling-v1.csv (14.7 MB)
  • model
    bert-base-chinese
    .locks
    models--bert-base-chinese
    models--bert-base-chinese
    .no_exist
    c30a6ed22ab4564dc1e3b2ecbf6e766b0611a33f
    added_tokens.json
    special_tokens_map.json
    blobs
    refs
  • main (40.0 B)
  • snapshots
    c30a6ed22ab4564dc1e3b2ecbf6e766b0611a33f
  • config.json (624.0 B)
  • model.safetensors (392.5 MB)
  • tokenizer.json (262.6 KB)
  • tokenizer_config.json (49.0 B)
  • vocab.txt (107.0 KB)
  • params
  • 0_bert.pth (7.46 KB)
  • 1_bert.pth (7.46 KB)
  • 2_bert.pth (7.46 KB)
  • data_test.py (658.0 B)
  • MyData.py (856.0 B)
  • net.py (989.0 B)
  • run.py (1.66 KB)
  • token_test.py (1.47 KB)
  • train.py (2.65 KB)
  • 【课件】Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析).pdf (500.6 KB)
  • 【录播】基于 BERT 的中文评价情感分析.mp4 (754.7 MB)
  • 【资料】Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析).pdf (304.7 KB)
  • day06_自定义vocab
    demo_6
    .idea
    inspectionProfiles
  • profiles_settings.xml (174.0 B)
  • .gitignore (50.0 B)
  • demo_6.iml (291.0 B)
  • encodings.xml (290.0 B)
  • misc.xml (189.0 B)
  • modules.xml (271.0 B)
  • workspace.xml (7.68 KB)
  • __pycache__
  • MyData.cpython-312.pyc (1.48 KB)
  • net.cpython-312.pyc (1.75 KB)
  • data
    ChnSentiCorp
    test
  • cache-7dd332715d90b654.arrow (9.97 KB)
  • dataset.arrow (372.3 KB)
  • dataset_info.json (1.79 KB)
  • state.json (255.0 B)
  • train
  • cache-1e3bba9512e20e17.arrow (73.5 KB)
  • cache-3bdb9443d1ca0706.arrow (624.0 B)
  • cache-7f783dce092dc384.arrow (73.5 KB)
  • cache-8a97cd1e06b735d2.arrow (73.5 KB)
  • cache-9f44d179cc25c59e.arrow (73.5 KB)
  • cache-39dfc0aff9c238ae.arrow (73.5 KB)
  • cache-42a7d570466d6993.arrow (76.7 KB)
  • cache-618b312c42069194.arrow (73.5 KB)
  • cache-942e97a8804ee679.arrow (73.5 KB)
  • cache-3432ecc2b0d45f4c.arrow (73.5 KB)
  • cache-60739da7e9e626bf.arrow (73.5 KB)
  • cache-703908ea6da8e823.arrow (73.5 KB)
  • cache-980049a695f6628c.arrow (69.1 KB)
  • cache-a6ab41ffbc1946d5.arrow (7.95 KB)
  • cache-a34d90b946dc58b8.arrow (73.5 KB)
  • cache-a41fe1013beb0d46.arrow (73.5 KB)
  • cache-b4e51936648802e2.arrow (76.7 KB)
  • cache-b53b61aef9d859aa.arrow (73.5 KB)
  • cache-b85c50cd434dd865.arrow (73.5 KB)
  • cache-badcf79eb9fa62a0.arrow (73.5 KB)
  • cache-c5b262546ff026fd.arrow (76.7 KB)
  • cache-d7c6377d856b0538.arrow (73.5 KB)
  • cache-eb31b953e8e788fb.arrow (73.5 KB)
  • cache-fdafe12f59ab3430.arrow (73.5 KB)
  • dataset.arrow (2.96 MB)
  • dataset_info.json (1.79 KB)
  • state.json (256.0 B)
  • validation
  • cache-1b273238fdadead7.arrow (9.57 KB)
  • cache-4a46afc6455cc3f0.arrow (9.57 KB)
  • cache-5cd00431b9d3a916.arrow (9.57 KB)
  • cache-8ae76a3b52248a8f.arrow (9.57 KB)
  • cache-9b7789b1e0e636fb.arrow (9.57 KB)
  • cache-85b0ee5d0aeacbe5.arrow (9.57 KB)
  • cache-486e66fea9239c3f.arrow (9.57 KB)
  • cache-585e054403b710b3.arrow (9.57 KB)
  • cache-749efdb8f0ee42be.arrow (9.57 KB)
  • cache-805d054a96ccc48f.arrow (9.57 KB)
  • cache-428974171b74f1a0.arrow (9.57 KB)
  • cache-800047dd8fdede53.arrow (9.57 KB)
  • cache-a1c8a8bb0a669e93.arrow (9.57 KB)
  • cache-c072f719f0b9b62a.arrow (9.57 KB)
  • cache-e621cb96adf0c923.arrow (9.97 KB)
  • dataset.arrow (376.6 KB)
  • dataset_info.json (1.79 KB)
  • state.json (261.0 B)
  • dataset_dict.json (43.0 B)
  • Weibo
  • dataset_info.json (2.27 KB)
  • model
    bert-base-chinese
    .locks
    models--bert-base-chinese
    models--bert-base-chinese
    .no_exist
    c30a6ed22ab4564dc1e3b2ecbf6e766b0611a33f
    added_tokens.json
    special_tokens_map.json
    blobs_20241231_024804
    refs
  • main (40.0 B)
  • snapshots
    c30a6ed22ab4564dc1e3b2ecbf6e766b0611a33f
  • config.json (624.0 B)
  • model.safetensors (392.5 MB)
  • tokenizer.json (262.6 KB)
  • tokenizer_config.json (49.0 B)
  • vocab.txt (107.0 KB)
  • params
  • 0_bert.pth (7.46 KB)
  • 1_bert.pth (7.46 KB)
  • 2_bert.pth (7.46 KB)
  • 3_bert.pth (7.46 KB)
  • data_test.py (665.0 B)
  • MyData.py (856.0 B)
  • MyData02.py (589.0 B)
  • net.py (989.0 B)
  • run.py (1.66 KB)
  • test.py (2.14 KB)
  • token_test.py (1.47 KB)
  • train.py (4.34 KB)
  • vocab_test.py (1.13 KB)
  • 【课件】Hugging Face 模型微调训练(自定义vocab).pdf (509.3 KB)
  • 【录播】自定义vocab.mp4 (921.7 MB)
  • day07_如何处理超长文本训练问题
    demo_7
    data
    news
  • news_data_info.json (1.80 KB)
  • test.csv (24.1 MB)
  • train.csv (120.2 MB)
  • validation.csv (12.2 MB)
  • Weibo
  • dataset_info.json (2.27 KB)
  • data.py (171.0 B)
  • data_test.py (300.0 B)
  • data_test02.py (915.0 B)
  • MyData.py (581.0 B)
  • net.py (1.33 KB)
  • new_test.csv (18.3 KB)
  • train.py (4.33 KB)
  • validation.csv (18.4 KB)
  • model.zip (364.5 MB)
  • 【课件】Hugging Face 模型微调训练(如何处理超长文本训练问题).pdf (511.4 KB)
  • 【录播】如何处理超长文本训练问题.mp4 (754.4 MB)
  • day08_GPT2-中文生成模型定制化微调训练
    demo_8
    .idea
    inspectionProfiles
  • profiles_settings.xml (174.0 B)
  • .gitignore (50.0 B)
  • demo_8.iml (291.0 B)
  • misc.xml (189.0 B)
  • modules.xml (271.0 B)
  • workspace.xml (7.23 KB)
  • __pycache__
  • data.cpython-312.pyc (1.30 KB)
  • data
  • chinese_poems.txt (49.3 MB)
  • example
  • test01.py (864.0 B)
  • test02.py (835.0 B)
  • test03.py (824.0 B)
  • test04.py (844.0 B)
  • test05.py (818.0 B)
  • params
  • data.py (496.0 B)
  • train.py (4.58 KB)
  • 【课件】Hugging Face 模型微调训练(GPT2-中文生成模型定制化微调训练).pdf (510.3 KB)
  • 【录播】GPT2-中文生成模型定制化微调训练.mp4 (871.5 MB)
  • day09_远程GPU服务器
    代码与资料
    GPT2训练日志及权重
  • net.pt (389.4 MB)
  • output.log (1.28 MB)
  • 模型推理代码
  • detect.py (724.0 B)
  • detect02.py (4.50 KB)
  • GPU服务器配置与使用.pdf (697.1 KB)
  • 1月8日.mp4 (749.4 MB)
  • 未命名文档.PanD (93.0 B)
  • day10_llama3大模型本地调用
    demo_10
    Llama3_test
  • test01.py (165.0 B)
  • test02.py (1.24 KB)
  • data.py (501.0 B)
  • detect.py (709.0 B)
  • detect02.py (4.54 KB)
  • net.pt (389.4 MB)
  • train.py (3.17 KB)
  • 【课件】llama3大模型本地调用.pdf (555.9 KB)
  • 【录播】llama3大模型本地调用.mp4 (912.7 MB)
  • day11_Llama3.2模型微调
    demo_11
    .idea
    inspectionProfiles
  • profiles_settings.xml (174.0 B)
  • .gitignore (50.0 B)
  • demo_11.iml (325.0 B)
  • misc.xml (168.0 B)
  • modules.xml (273.0 B)
  • workspace.xml (2.04 KB)
  • test01.py (336.0 B)
  • test02.py (1.14 KB)
  • data.zip (280.1 KB)
  • 【课件】LLaMa3微调(使用 LLaMA-Factory 微调 LLaMA3).pdf (602.0 KB)
  • 【录播】llama3.2模型微调.mp4 (865.3 MB)
  • 【资料】LLaMa3微调(使用 LLaMA-Factory 微调 LLaMA3).pdf (140.9 KB)
  • day12_Lora模型合并与推理测试
    checkpoint-800
  • adapter_config.json (754.0 B)
  • adapter_model.safetensors (21.5 MB)
  • optimizer.pt (43.2 MB)
  • README.md (5.01 KB)
  • rng_state.pth (13.9 KB)
  • scheduler.pt (1.04 KB)
  • special_tokens_map.json (650.0 B)
  • tokenizer.json (16.4 MB)
  • tokenizer_config.json (53.4 KB)
  • trainer_state.json (29.3 KB)
  • training_args.bin (5.49 KB)
  • data
  • ruozhiba_qaswift.json (588.5 KB)
  • 【录播】Lora模型合并与推理测试.mp4 (906.6 MB)
  • day13_LLaMA-Factory模型导出量化
    checkpoint-3700
  • adapter_config.json (754.0 B)
  • adapter_model.safetensors (21.5 MB)
  • optimizer.pt (43.2 MB)
  • README.md (5.01 KB)
  • rng_state.pth (13.9 KB)
  • scheduler.pt (1.04 KB)
  • special_tokens_map.json (439.0 B)
  • tokenizer.json (16.4 MB)
  • tokenizer_config.json (53.3 KB)
  • trainer_state.json (133.8 KB)
  • training_args.bin (5.43 KB)
  • demo_13
    data
  • ruozhiba_qaswift.json (588.5 KB)
  • ruozhiba_qaswift_train.json (632.3 KB)
  • test01.py (724.0 B)
  • 【课件】LLaMa3导出量化(LLaMA-Factory模型导出量化).pdf (497.3 KB)
  • 【录播】LLaMA-Factory模型导出量化.mp4 (1.06 GB)
  • 【资料】LLaMa3导出量化(LLaMA-Factory模型导出量化).pdf (769.0 KB)
  • day14_LLaMA-Factory模型评估与QLora微调
  • AI技术路线.pdf (107.4 KB)
  • 【课件】LLama-Factory模型评估与QLora微调.pdf (512.7 KB)
  • 【录播】LLama-Factory模型评估与QLora微调.mp4 (763.6 MB)
  • 【资料】LLama-Factory模型评估.pdf (295.4 KB)
  • day15_Qwen模型打包部署(Lora模型合并&转GGUF模型部署)
    Lora
    checkpoint-400
  • adapter_config.json (744.0 B)
  • adapter_model.safetensors (228.8 MB)
  • added_tokens.json (80.0 B)
  • merges.txt (1.59 MB)
  • optimizer.pt (457.8 MB)
  • README.md (5.00 KB)
  • rng_state.pth (13.9 KB)
  • scheduler.pt (1.04 KB)
  • special_tokens_map.json (367.0 B)
  • tokenizer.json (10.9 MB)
  • tokenizer_config.json (1.29 KB)
  • trainer_state.json (15.1 KB)
  • training_args.bin (5.55 KB)
  • vocab.json (2.65 MB)
  • 【课件】Qwen模型打包部署(Lora模型合并&转GGUF模型部署).pdf (555.3 KB)
  • 【录播】HF模型转GGUF以及使用ollama部署.mp4 (1.11 GB)
  • 【资料】Qwen模型打包部署(Lora模型合并&转GGUF模型部署).pdf (395.7 KB)
  • day16_Qwen模型打包部署(HF转GGUF&ollama open_webui部署)
  • Qwen1___5-1___8B-Chat-merged-q8.gguf (1.82 GB)
  • 【课件】Qwen模型打包部署(Lora模型合并&转GGUF模型部署).pdf (555.3 KB)
  • 【录播】Qwen模型打包部署(HF转GGUF&ollama open_webui部署).mp4 (848.7 MB)
  • 【资料】Qwen模型打包部署(Lora模型合并&转GGUF模型部署).pdf (395.7 KB)
  • day17_Xtuner微调大模型
    xtuner数据集转换代码
    data
  • ruozhiba_qaswift.json (588.5 KB)
  • target_data.json (714.2 KB)
  • data_utils.py (742.0 B)
  • xtuner微调配置文件
  • qwen1_5_1_8b_chat_qlora_alpaca_e3.py (7.56 KB)
  • 【录播】Xtuner微调大模型(QLora与Lora).mp4 (923.5 MB)
  • 【资料】xtuner微调大模型教程.pdf (184.9 KB)
  • day18_LMDeploy部署大模型
    demo_18
  • test01.py (457.0 B)
  • test02.py (440.0 B)
  • 【录播】LMDeploy部署大模型.mp4 (952.8 MB)
  • 【资料】LMDeploy部署大模型.pdf (327.0 KB)
  • day19_OpenCompass大模型评估
    ptb
    ptb_train
  • data-00000-of-00001.arrow (4.91 MB)
  • dataset_info.json (2.13 KB)
  • state.json (262.0 B)
  • ptb_val
  • data-00000-of-00001.arrow (394.6 KB)
  • dataset_info.json (2.13 KB)
  • state.json (267.0 B)
  • 如果OpenCompassData-core-20240207.zip压缩包下载解压有问题就用当前目录对应的解压包
  • OpenCompassData-core-20240207.zip (148.9 MB)
  • 【课件】OpenCompass模型评估.pdf (490.0 KB)
  • 【录播】OpenCompass大模型评估.mp4 (850.4 MB)
  • 【资料】OpenCompass模型评估.pdf (197.9 KB)
  • day20_llama-index核心组件
    demo_20
    data
  • pdf内容研报.pdf (189.1 KB)
  • README_zh-CN.md (14.5 KB)
  • requirements.txt (4.33 KB)
  • test01.py (365.0 B)
  • test02.py (222.0 B)
  • 模型微调与RAG.png (104.6 KB)
  • 【课件】Llama_Index(核心组件介绍).pdf (486.3 KB)
  • 【录播】Llama_Index核心组件介绍.mp4 (1.15 GB)
  • 【资料】Llama_Index(核心组件介绍).pdf (624.0 KB)
  • day21_llama-index入门实操
    demo_21
    data
  • README_zh-CN.md (14.5 KB)
  • download_hf.py (177.0 B)
  • test01.py (534.0 B)
  • test02.py (1.60 KB)
  • test03.py (746.0 B)
  • 【课件】Llama_index入门实操.pdf (496.1 KB)
  • 【录播】Llama_index入门实操.mp4 (934.0 MB)
  • day22_llama-index实现RAG
    demo_22
    data
  • pdf内容研报.pdf (189.1 KB)
  • README_zh-CN.md (12.7 KB)
  • storage
  • default__vector_store.json (175.9 KB)
  • docstore.json (74.5 KB)
  • graph_store.json (18.0 B)
  • image__vector_store.json (72.0 B)
  • index_store.json (1.88 KB)
  • app.py (2.70 KB)
  • download_hf.py (177.0 B)
  • test01.py (534.0 B)
  • test02.py (1.62 KB)
  • test03.py (956.0 B)
  • test04.py (2.14 KB)
  • 【课件】Llama_index实现RAG.pdf (489.2 KB)
  • 【录播】llama-index实现RAG.mp4 (1.31 GB)
  • day23_AutoGen_Studio搭建多智能体应用
    图像资料
  • Agent01.png (121.1 KB)
  • Agent02.png (113.4 KB)
  • Agent03.png (31.7 KB)
  • 【课件】AutoGen_Studio搭建多智能体应用.pdf (599.8 KB)
  • 【录播】AutoGen_Studio搭建多智能体应用.mp4 (753.1 MB)
  • 【资料】AutoGen_Studio搭建多智能体应用.pdf (859.3 KB)
  • day24_多模态大模型
    笔记
  • 多模态01.png (86.8 KB)
  • 多模态02.png (127.3 KB)
  • 【课件】多模态(多模态大模型的概念与本地部署调用).pdf (731.9 KB)
  • 【录播】多模态大模型的概念与本地部署调用.mp4 (704.8 MB)
  • 【资料】多模态(多模态大模型的概念与本地部署调用).pdf (4.90 MB)
  • day25_deep-seek与多卡训练
    课堂笔记
  • deepseek.png (152.9 KB)
  • 【课件】deepseek与分布式训练.pdf (491.8 KB)
  • 【录播】deep_seek与多卡训练.mp4 (1.02 GB)
  • day26_基于本地大模型的AI试题系统(方案篇)
    数据
  • 2020年高考生物选择题专项训练11-15套Word版含答案及解析.docx (42.0 KB)
  • 2020年高考生物选择题专项训练20套附答案及解析.docx (454.6 KB)
  • 2022年高考生物选择题专项训练(共6份).docx (2.49 MB)
  • 2023年高考生物选择题专练(8套)含答案及解析.docx (37.5 KB)
  • 高考生物常识选择题单选题100道及答案.docx (27.3 KB)
  • 数据示例.xls (19.5 KB)
  • AI题库项目分析.png (245.3 KB)
  • 【录播】基于本地大模型的AI试题系统(方案篇).mp4 (1.27 GB)
  • day27_基于本地大模型的AI试题系统(实现篇)
    标注后的数据
  • 高考生物选择题01.csv (77.1 KB)
  • 高考生物选择题02.csv (35.0 KB)
  • Lora模型与训练日志
    checkpoint-1300
  • adapter_config.json (762.0 B)
  • adapter_model.safetensors (140.9 MB)
  • optimizer.pt (282.1 MB)
  • README.md (5.02 KB)
  • rng_state.pth (13.9 KB)
  • scheduler.pt (1.04 KB)
  • special_tokens_map.json (485.0 B)
  • tokenizer.json (10.9 MB)
  • tokenizer_config.json (6.67 KB)
  • trainer_state.json (55.4 KB)
  • training_args.bin (5.62 KB)
  • nohup.out (262.2 KB)
  • training_args.yaml (766.0 B)
  • 数据转换代码
  • data_utils.py (2.03 KB)
  • test_data.py (1.12 KB)
  • 转换后的训练集与测试集
  • test.json (51.6 KB)
  • train.json (162.2 KB)
  • 【录播】基于本地大模型的AI试题系统(实现篇).mp4 (1.60 GB)
  • day28_基于RAG的法律条文智能助手(方案篇)
    llama_factory对话模板导出
  • mytest.py (829.0 B)
  • 文件位置.jpg (19.6 KB)
  • 模型微调数据集
  • train_data.json (20.1 KB)
  • RAG知识库数据获取
  • data_test01.py (1.60 KB)
  • data_test02.py (1.59 KB)
  • R1思维链与微调.png (109.1 KB)
  • RAG项目需求.png (125.3 KB)
  • 【课件】基于RAG的法律条文智能助手(方案篇).pdf (495.8 KB)
  • 【录播】基于RAG的法律条文智能助手【方案篇】.mp4 (1.06 GB)
  • day29_基于RAG的法律条文助手(实现篇)
    项目源码
    rag_law
    data
  • data1.json (64.4 KB)
  • llama_index_llm.py (583.0 B)
  • llama_index_vllm.py (873.0 B)
  • rag_law.py (7.97 KB)
  • read_json.py (781.0 B)
  • 【课件】基于RAG的法律条文智能助手(实现篇).pdf (491.2 KB)
  • 【录播】基于RAG的法律条文智能助手【实现篇】.mp4 (1.49 GB)
  • day30_基于pytorch的语音唤醒系统
    项目源码
    wakeup_test
    .idea
    inspectionProfiles
  • profiles_settings.xml (174.0 B)
  • .gitignore (50.0 B)
  • misc.xml (189.0 B)
  • modules.xml (281.0 B)
  • wakeup_test.iml (291.0 B)
  • workspace.xml (6.42 KB)
  • __pycache__
  • audio_processor.cpython-312.pyc (3.87 KB)
  • crnn.cpython-312.pyc (2.46 KB)
  • dataset.cpython-312.pyc (4.78 KB)
  • checkpoints
  • best_model.pth (3.45 MB)
  • dataset
    split_dataset
    train
    not_wake
  • 20250226_160545_0.wav (93.8 KB)
  • 20250226_160549_1.wav (93.8 KB)
  • 20250226_160552_2.wav (93.8 KB)
  • 20250226_160556_3.wav (93.8 KB)
  • 20250226_160600_4.wav (93.8 KB)
  • 20250226_160603_5.wav (93.8 KB)
  • 20250226_160607_6.wav (93.8 KB)
  • 20250226_160610_7.wav (93.8 KB)
  • 20250226_160614_8.wav (93.8 KB)
  • 20250226_160621_10.wav (93.8 KB)
  • 20250226_160624_11.wav (93.8 KB)
  • 20250226_160632_13.wav (93.8 KB)
  • 20250226_160635_14.wav (93.8 KB)
  • 20250226_160639_15.wav (93.8 KB)
  • 20250226_160642_16.wav (93.8 KB)
  • 20250226_160646_17.wav (93.8 KB)
  • 20250226_160657_20.wav (93.8 KB)
  • 20250226_160700_21.wav (93.8 KB)
  • 20250226_160704_22.wav (93.8 KB)
  • 20250226_160707_23.wav (93.8 KB)
  • 20250226_160711_24.wav (93.8 KB)
  • 20250226_160714_25.wav (93.8 KB)
  • 20250226_160721_27.wav (93.8 KB)
  • 20250226_160725_28.wav (93.8 KB)
  • 20250226_160739_32.wav (93.8 KB)
  • 20250226_160743_33.wav (93.8 KB)
  • 20250226_160746_34.wav (93.8 KB)
  • 20250226_160750_35.wav (93.8 KB)
  • 20250226_160757_37.wav (93.8 KB)
  • 20250226_160801_38.wav (93.8 KB)
  • 20250226_160804_39.wav (93.8 KB)
  • 20250226_160808_40.wav (93.8 KB)
  • 20250226_160811_41.wav (93.8 KB)
  • 20250226_160815_42.wav (93.8 KB)
  • 20250226_160819_43.wav (93.8 KB)
  • 20250226_160822_44.wav (93.8 KB)
  • 20250226_160829_46.wav (93.8 KB)
  • 20250226_160833_47.wav (93.8 KB)
  • 20250226_160836_48.wav (93.8 KB)
  • 20250226_160840_49.wav (93.8 KB)
  • 20250226_160843_50.wav (93.8 KB)
  • 20250226_160847_51.wav (93.8 KB)
  • 20250226_160851_52.wav (93.8 KB)
  • 20250226_160854_53.wav (93.8 KB)
  • 20250226_160858_54.wav (93.8 KB)
  • 20250226_160908_57.wav (93.8 KB)
  • 20250226_160912_58.wav (93.8 KB)
  • 20250226_160915_59.wav (93.8 KB)
  • 20250226_160919_60.wav (93.8 KB)
  • 20250226_160923_61.wav (93.8 KB)
  • 20250226_160926_62.wav (93.8 KB)
  • 20250226_160930_63.wav (93.8 KB)
  • 20250226_160937_65.wav (93.8 KB)
  • 20250226_160940_66.wav (93.8 KB)
  • 20250226_160944_67.wav (93.8 KB)
  • 20250226_160955_70.wav (93.8 KB)
  • 20250226_160958_71.wav (93.8 KB)
  • 20250226_161002_72.wav (93.8 KB)
  • 20250226_161009_74.wav (93.8 KB)
  • 20250226_161012_75.wav (93.8 KB)
  • 20250226_161020_77.wav (93.8 KB)
  • 20250226_161027_79.wav (93.8 KB)
  • 20250226_161030_80.wav (93.8 KB)
  • 20250226_161034_81.wav (93.8 KB)
  • 20250226_161041_83.wav (93.8 KB)
  • 20250226_161044_84.wav (93.8 KB)
  • 20250226_161048_85.wav (93.8 KB)
  • 20250226_161052_86.wav (93.8 KB)
  • 20250226_161055_87.wav (93.8 KB)
  • 20250226_161059_88.wav (93.8 KB)
  • 20250226_161102_89.wav (93.8 KB)
  • 20250226_161106_90.wav (93.8 KB)
  • 20250226_161109_91.wav (93.8 KB)
  • 20250226_161113_92.wav (93.8 KB)
  • 20250226_161116_93.wav (93.8 KB)
  • 20250226_161120_94.wav (93.8 KB)
  • 20250226_161124_95.wav (93.8 KB)
  • 20250226_161127_96.wav (93.8 KB)
  • 20250226_161131_97.wav (93.8 KB)
  • 20250226_161134_98.wav (93.8 KB)
  • 20250226_161138_99.wav (93.8 KB)
  • 20250226_161141_100.wav (93.8 KB)
  • 20250226_161145_101.wav (93.8 KB)
  • 20250226_161149_102.wav (93.8 KB)
  • 20250226_161152_103.wav (93.8 KB)
  • 20250226_161159_105.wav (93.8 KB)
  • 20250226_161203_106.wav (93.8 KB)
  • 20250226_161206_107.wav (93.8 KB)
  • 20250226_161213_109.wav (93.8 KB)
  • 20250226_161221_111.wav (93.8 KB)
  • 20250226_161224_112.wav (93.8 KB)
  • 20250226_161228_113.wav (93.8 KB)
  • 20250226_161231_114.wav (93.8 KB)
  • 20250226_161235_115.wav (93.8 KB)
  • 20250226_161238_116.wav (93.8 KB)
  • 20250226_161242_117.wav (93.8 KB)
  • 20250226_161249_119.wav (93.8 KB)
  • 20250226_161253_120.wav (93.8 KB)
  • 20250226_161256_121.wav (93.8 KB)
  • 20250226_161300_122.wav (93.8 KB)
  • wake
  • 20250226_160113_0.wav (93.8 KB)
  • 20250226_160117_1.wav (93.8 KB)
  • 20250226_160121_2.wav (93.8 KB)
  • 20250226_160126_3.wav (93.8 KB)
  • 20250226_160130_4.wav (93.8 KB)
  • 20250226_160134_5.wav (93.8 KB)
  • 20250226_160138_6.wav (93.8 KB)
  • 20250226_160143_7.wav (93.8 KB)
  • 20250226_160147_8.wav (93.8 KB)
  • 20250226_160151_9.wav (93.8 KB)
  • 20250226_160155_10.wav (93.8 KB)
  • 20250226_160200_11.wav (93.8 KB)
  • 20250226_160204_12.wav (93.8 KB)
  • 20250226_160212_14.wav (93.8 KB)
  • 20250226_160217_15.wav (93.8 KB)
  • 20250226_160221_16.wav (93.8 KB)
  • 20250226_160229_18.wav (93.8 KB)
  • 20250226_160238_20.wav (93.8 KB)
  • 20250226_160242_21.wav (93.8 KB)
  • 20250226_160247_22.wav (93.8 KB)
  • 20250226_160251_23.wav (93.8 KB)
  • 20250226_160255_24.wav (93.8 KB)
  • 20250226_160308_27.wav (93.8 KB)
  • 20250226_160312_28.wav (93.8 KB)
  • 20250226_160316_29.wav (93.8 KB)
  • 20250226_160325_31.wav (93.8 KB)
  • 20250226_160333_33.wav (93.8 KB)
  • 20250226_160338_34.wav (93.8 KB)
  • 20250226_160342_35.wav (93.8 KB)
  • 20250226_160346_36.wav (93.8 KB)
  • 20250226_160351_37.wav (93.8 KB)
  • 20250226_160355_38.wav (93.8 KB)
  • 20250226_160403_40.wav (93.8 KB)
  • 20250226_160408_41.wav (93.8 KB)
  • 20250226_160412_42.wav (93.8 KB)
  • 20250226_160416_43.wav (93.8 KB)
  • 20250226_160420_44.wav (93.8 KB)
  • 20250226_160429_46.wav (93.8 KB)
  • 20250226_160433_47.wav (93.8 KB)
  • 20250226_160442_49.wav (93.8 KB)
  • val
    not_wake
  • 20250226_160617_9.wav (93.8 KB)
  • 20250226_160628_12.wav (93.8 KB)
  • 20250226_160649_18.wav (93.8 KB)
  • 20250226_160653_19.wav (93.8 KB)
  • 20250226_160718_26.wav (93.8 KB)
  • 20250226_160729_29.wav (93.8 KB)
  • 20250226_160732_30.wav (93.8 KB)
  • 20250226_160736_31.wav (93.8 KB)
  • 20250226_160754_36.wav (93.8 KB)
  • 20250226_160826_45.wav (93.8 KB)
  • 20250226_160901_55.wav (93.8 KB)
  • 20250226_160905_56.wav (93.8 KB)
  • 20250226_160933_64.wav (93.8 KB)
  • 20250226_160948_68.wav (93.8 KB)
  • 20250226_160951_69.wav (93.8 KB)
  • 20250226_161005_73.wav (93.8 KB)
  • 20250226_161016_76.wav (93.8 KB)
  • 20250226_161023_78.wav (93.8 KB)
  • 20250226_161037_82.wav (93.8 KB)
  • 20250226_161156_104.wav (93.8 KB)
  • 20250226_161210_108.wav (93.8 KB)
  • 20250226_161217_110.wav (93.8 KB)
  • 20250226_161246_118.wav (93.8 KB)
  • 20250226_161318_127.wav (93.8 KB)
  • 20250226_161321_128.wav (93.8 KB)
  • 20250226_161332_131.wav (93.8 KB)
  • 20250226_161335_132.wav (93.8 KB)
  • 20250226_161408_141.wav (93.8 KB)
  • 20250226_161415_143.wav (93.8 KB)
  • 20250226_161422_145.wav (93.8 KB)
  • wake
  • 20250226_160208_13.wav (93.8 KB)
  • 20250226_160225_17.wav (93.8 KB)
  • 20250226_160234_19.wav (93.8 KB)
  • 20250226_160259_25.wav (93.8 KB)
  • 20250226_160304_26.wav (93.8 KB)
  • 20250226_160321_30.wav (93.8 KB)
  • 20250226_160329_32.wav (93.8 KB)
  • 20250226_160359_39.wav (93.8 KB)
  • 20250226_160425_45.wav (93.8 KB)
  • 20250226_160437_48.wav (93.8 KB)
  • train
    not_wake
  • 20250226_160545_0.wav (93.8 KB)
  • 20250226_160549_1.wav (93.8 KB)
  • 20250226_160552_2.wav (93.8 KB)
  • 20250226_160556_3.wav (93.8 KB)
  • 20250226_160600_4.wav (93.8 KB)
  • 20250226_160603_5.wav (93.8 KB)
  • 20250226_160607_6.wav (93.8 KB)
  • 20250226_160610_7.wav (93.8 KB)
  • 20250226_160614_8.wav (93.8 KB)
  • 20250226_160617_9.wav (93.8 KB)
  • 20250226_160621_10.wav (93.8 KB)
  • 20250226_160624_11.wav (93.8 KB)
  • 20250226_160628_12.wav (93.8 KB)
  • 20250226_160632_13.wav (93.8 KB)
  • 20250226_160635_14.wav (93.8 KB)
  • 20250226_160639_15.wav (93.8 KB)
  • 20250226_160642_16.wav (93.8 KB)
  • 20250226_160646_17.wav (93.8 KB)
  • 20250226_160649_18.wav (93.8 KB)
  • 20250226_160653_19.wav (93.8 KB)
  • 20250226_160657_20.wav (93.8 KB)
  • 20250226_160700_21.wav (93.8 KB)
  • 20250226_160704_22.wav (93.8 KB)
  • 20250226_160707_23.wav (93.8 KB)
  • 20250226_160711_24.wav (93.8 KB)
  • 20250226_160714_25.wav (93.8 KB)
  • 20250226_160718_26.wav (93.8 KB)
  • 20250226_160721_27.wav (93.8 KB)
  • 20250226_160725_28.wav (93.8 KB)
  • 20250226_160729_29.wav (93.8 KB)
  • 20250226_160732_30.wav (93.8 KB)
  • 20250226_160736_31.wav (93.8 KB)
  • 20250226_160739_32.wav (93.8 KB)
  • 20250226_160743_33.wav (93.8 KB)
  • 20250226_160746_34.wav (93.8 KB)
  • 20250226_160750_35.wav (93.8 KB)
  • 20250226_160754_36.wav (93.8 KB)
  • 20250226_160757_37.wav (93.8 KB)
  • 20250226_160801_38.wav (93.8 KB)
  • 20250226_160804_39.wav (93.8 KB)
  • 20250226_160808_40.wav (93.8 KB)
  • 20250226_160811_41.wav (93.8 KB)
  • 20250226_160815_42.wav (93.8 KB)
  • 20250226_160819_43.wav (93.8 KB)
  • 20250226_160822_44.wav (93.8 KB)
  • 20250226_160826_45.wav (93.8 KB)
  • 20250226_160829_46.wav (93.8 KB)
  • 20250226_160833_47.wav (93.8 KB)
  • 20250226_160836_48.wav (93.8 KB)
  • 20250226_160840_49.wav (93.8 KB)
  • 20250226_160843_50.wav (93.8 KB)
  • 20250226_160847_51.wav (93.8 KB)
  • 20250226_160851_52.wav (93.8 KB)
  • 20250226_160854_53.wav (93.8 KB)
  • 20250226_160858_54.wav (93.8 KB)
  • 20250226_160901_55.wav (93.8 KB)
  • 20250226_160905_56.wav (93.8 KB)
  • 20250226_160908_57.wav (93.8 KB)
  • 20250226_160912_58.wav (93.8 KB)
  • 20250226_160915_59.wav (93.8 KB)
  • 20250226_160919_60.wav (93.8 KB)
  • 20250226_160923_61.wav (93.8 KB)
  • 20250226_160926_62.wav (93.8 KB)
  • 20250226_160930_63.wav (93.8 KB)
  • 20250226_160933_64.wav (93.8 KB)
  • 20250226_160937_65.wav (93.8 KB)
  • 20250226_160940_66.wav (93.8 KB)
  • 20250226_160944_67.wav (93.8 KB)
  • 20250226_160948_68.wav (93.8 KB)
  • 20250226_160951_69.wav (93.8 KB)
  • 20250226_160955_70.wav (93.8 KB)
  • 20250226_160958_71.wav (93.8 KB)
  • 20250226_161002_72.wav (93.8 KB)
  • 20250226_161005_73.wav (93.8 KB)
  • 20250226_161009_74.wav (93.8 KB)
  • 20250226_161012_75.wav (93.8 KB)
  • 20250226_161016_76.wav (93.8 KB)
  • 20250226_161020_77.wav (93.8 KB)
  • 20250226_161023_78.wav (93.8 KB)
  • 20250226_161027_79.wav (93.8 KB)
  • 20250226_161030_80.wav (93.8 KB)
  • 20250226_161034_81.wav (93.8 KB)
  • 20250226_161037_82.wav (93.8 KB)
  • 20250226_161041_83.wav (93.8 KB)
  • 20250226_161044_84.wav (93.8 KB)
  • 20250226_161048_85.wav (93.8 KB)
  • 20250226_161052_86.wav (93.8 KB)
  • 20250226_161055_87.wav (93.8 KB)
  • 20250226_161059_88.wav (93.8 KB)
  • 20250226_161102_89.wav (93.8 KB)
  • 20250226_161106_90.wav (93.8 KB)
  • 20250226_161109_91.wav (93.8 KB)
  • 20250226_161113_92.wav (93.8 KB)
  • 20250226_161116_93.wav (93.8 KB)
  • 20250226_161120_94.wav (93.8 KB)
  • 20250226_161124_95.wav (93.8 KB)
  • 20250226_161127_96.wav (93.8 KB)
  • 20250226_161131_97.wav (93.8 KB)
  • 20250226_161134_98.wav (93.8 KB)
  • 20250226_161138_99.wav (93.8 KB)
  • wake
  • 20250226_160113_0.wav (93.8 KB)
  • 20250226_160117_1.wav (93.8 KB)
  • 20250226_160121_2.wav (93.8 KB)
  • 20250226_160126_3.wav (93.8 KB)
  • 20250226_160130_4.wav (93.8 KB)
  • 20250226_160134_5.wav (93.8 KB)
  • 20250226_160138_6.wav (93.8 KB)
  • 20250226_160143_7.wav (93.8 KB)
  • 20250226_160147_8.wav (93.8 KB)
  • 20250226_160151_9.wav (93.8 KB)
  • 20250226_160155_10.wav (93.8 KB)
  • 20250226_160200_11.wav (93.8 KB)
  • 20250226_160204_12.wav (93.8 KB)
  • 20250226_160208_13.wav (93.8 KB)
  • 20250226_160212_14.wav (93.8 KB)
  • 20250226_160217_15.wav (93.8 KB)
  • 20250226_160221_16.wav (93.8 KB)
  • 20250226_160225_17.wav (93.8 KB)
  • 20250226_160229_18.wav (93.8 KB)
  • 20250226_160234_19.wav (93.8 KB)
  • 20250226_160238_20.wav (93.8 KB)
  • 20250226_160242_21.wav (93.8 KB)
  • 20250226_160247_22.wav (93.8 KB)
  • 20250226_160251_23.wav (93.8 KB)
  • 20250226_160255_24.wav (93.8 KB)
  • 20250226_160259_25.wav (93.8 KB)
  • 20250226_160304_26.wav (93.8 KB)
  • 20250226_160308_27.wav (93.8 KB)
  • 20250226_160312_28.wav (93.8 KB)
  • 20250226_160316_29.wav (93.8 KB)
  • 20250226_160321_30.wav (93.8 KB)
  • 20250226_160325_31.wav (93.8 KB)
  • 20250226_160329_32.wav (93.8 KB)
  • 20250226_160333_33.wav (93.8 KB)
  • 20250226_160338_34.wav (93.8 KB)
  • 20250226_160342_35.wav (93.8 KB)
  • 20250226_160346_36.wav (93.8 KB)
  • 20250226_160351_37.wav (93.8 KB)
  • 20250226_160355_38.wav (93.8 KB)
  • 20250226_160359_39.wav (93.8 KB)
  • 20250226_160403_40.wav (93.8 KB)
  • 20250226_160408_41.wav (93.8 KB)
  • 20250226_160412_42.wav (93.8 KB)
  • 20250226_160416_43.wav (93.8 KB)
  • 20250226_160420_44.wav (93.8 KB)
  • 20250226_160425_45.wav (93.8 KB)
  • 20250226_160429_46.wav (93.8 KB)
  • 20250226_160433_47.wav (93.8 KB)
  • 20250226_160437_48.wav (93.8 KB)
  • 20250226_160442_49.wav (93.8 KB)
  • results
  • confusion_matrix.png (15.9 KB)
  • errors.txt
  • audio_processor.py (2.45 KB)
  • crnn.py (1.48 KB)
  • data_splite.py (1.40 KB)
  • dataset.py (3.31 KB)
  • get_voice.py (2.04 KB)
  • realtime_test.py (3.36 KB)
  • test.py (2.24 KB)
  • train.py (4.20 KB)
  • 语音唤醒.png (171.2 KB)
  • 【课件】扩展项目(基于pytorch实现的语音识别).pdf (487.9 KB)
  • 【录播】扩展项目(基于pytorch的语音唤醒系统).mp4 (1.67 GB)
  • AI大模型学习路径.pdf (676.5 KB)
  • 大神指南.docx (1.44 MB)
  • 下载链接

    点我免费下载

    资源预览

    资源预览图
    重要版权声明

    本站为网盘资源搜索引擎,仅提供基于互联网公开信息的链接索引服务,不参与资源的上传、存储、录制及编辑,亦不提供直接下载服务。资源均来源于程序自动抓取的互联网公开内容,仅供学习交流使用,请在下载资源后 24 小时内删除,建议通过合法渠道支持正版内容。鉴于资源的海量性与复杂性,本站无法对所有链接及内容的合法性、版权状态进行逐一核验,用户应自行判断资源合规性并承担使用风险。严禁将资源用于商业用途或任何违反法律法规、公序良俗的活动,用户需对自身使用行为的合法性负责,由此产生的一切责任由用户自行承担。链接有效性受原存储平台及上传者行为影响,本站不保证链接的长期可访问性,对链接失效导致的任何损失不承担责任。本站高度重视知识产权保护,若本网站收录的第三方网页内容无意侵犯了您的权益如请立即发送邮件联系我们,本站会在24小时内进行删除处理,会通过邮件回复您!

    上一篇

    《拿破仑传》拿破仑的一生[epub]

    下一篇

    抖音美女-小狮子吖视频合集
    评论(0)
    游客的头像
    1. 暂时还没有评论哦